首页
游戏
影视
直播
广播
听书
音乐
图片
更多
看书
微视
主播
统计
友链
留言
关于
论坛
邮件
推荐
我的硬盘
我的搜索
我的记录
我的文件
我的图书
我的笔记
我的书签
我的微博
Search
1
科普:Memory Compiler生成的Register file和SRAM有何区别?
40 阅读
2
在IC617中进行xa+vcs数模混仿
33 阅读
3
virtuoso和empyrean alps模拟仿真和混仿教程
32 阅读
4
文档内容搜索哪家强? 15款文件搜索软件横向评测
19 阅读
5
vcs debug rtl或者netlist 中的loop
17 阅读
默认分类
芯片市场
数字电路
芯片后端
模拟电路
芯片验证
原型与样片验证
算法与架构
DFX与量产封装
PC&Server OS设置
移动OS设置
软件方案
新浪备份
有道备份
登录
Search
标签搜索
python
Docker
vcs
PyQT
STM32
cadence
linux
systemverilog
EDA
Alist
vscode
uos
package
C
QT
CXL
sed
sv
webdav
FPGA
bennyhe
累计撰写
341
篇文章
累计收到
31
条评论
首页
栏目
默认分类
芯片市场
数字电路
芯片后端
模拟电路
芯片验证
原型与样片验证
算法与架构
DFX与量产封装
PC&Server OS设置
移动OS设置
软件方案
新浪备份
有道备份
页面
游戏
影视
直播
广播
听书
音乐
图片
看书
微视
主播
统计
友链
留言
关于
论坛
邮件
推荐
我的硬盘
我的搜索
我的记录
我的文件
我的图书
我的笔记
我的书签
我的微博
搜索到
3
篇与
的结果
2025-09-21
芯片封装简史
为什么封装现在很重要封装曾经是半导体制造过程中的事后想法,不被大家重视。当你创造了这一小块神奇的硅片之后,然后把他用某种方法封装起来,同时引出管脚,一颗芯片就诞生了。但是随着摩尔定律的延伸,工程师们意识到,他们可以利用对芯片的所有部分,包括封装在内进行优化和创新,来制造出最好的产品。更令人惊讶的是,过去没有一家封装公司被认为像传统的前端制造工艺那样重要。封装供应链通常被认为是"后端",并被视为成本中心,类似于银行业的前台和后台。但现在,随着前端难以更好的缩小芯片尺寸,一个全新的关注领域已经出现,这就是对先进封装的重视。接下来我们讨论一下封装的发展简史,从简单的DIP封装一直到先进的2.5D或3D封装。封装发展简介这是我从这个精彩的视频座中发现的封装技术的简要层次结构。如果你有一些时间,可以看一下。(视频发表于2012年,但是当时已经提到了现在最新的3D封装技术,所以并不过时) 芯片封装简史@eetop@创芯大讲堂 #封装#芯片#3D封装封装介绍 封装技术一个简化的演变过程是:DIP>QFP>BGA>POP/SiP>WLP 显然,有很多不同的封装技术,但我们要讨论的是大致能代表每种类型的简单技术,然后慢慢将其带到现在。我也非常喜欢下图这个高层次的概述(不过它已经过时了,但仍然正确)。在封装的最初阶段,裸片通常采用陶瓷或金属罐封(气密),以实现最大的可靠性。这主要适用于航空航天和军事应用,这些功能需要最高水平的可靠性。然而,对于我们的大多数日常用例来说,这并不是真正可行的,所以我们开始使用塑料封装和双列直插封装(DIP)。DIP封装(1964-1980年代)最早的DIP包装元件是由仙童半导体司的Bryant Buck Rogers在1964年时发明,在表面贴装技术问世之前的十年里,它被广泛应用。DIP在实际的裸片周围使用塑料封装外壳(编辑注:实际上陶瓷封装的军品芯片也大批采用了DIP封装),并有两排平行的突出的引脚,称为引线框架,与下面的PCB(印刷电路板)相连。实际的芯片通过键合线连接到两个引线框架,两个引线框架可以连接到印刷电路板(PCB)。DIP封装以复古的方式具有标志性,设计选择是可以理解的。实际的裸片将完全密封在树脂中,因此它带来了高可靠性和低成本,并且许多首批标志性的半导体都是以这种方式封装的。请注意,芯片通过导线连接到外部引线框架,这使其成为一种"引线键合"封装方法。稍后将对此进行详细介绍。下面是英特尔8008--实际上是第一批现代微处理器之一。注意它的标志性DIP封装。因此,如果你看到那些看起来像小蜘蛛的半导体的时髦照片,这只是一个DIP封装类的半导体。英特尔的原始微处理器,8008 家族然后,这些小金插针中的每一个都被焊接到PCB上,在那里它与其他电气元件和系统的其余部分接触。以下是封装如何焊接到PCB板上。PCB本身通常是由铜或其他电气元件由非导电材料层压而成。然后,PCB板可以将电信号从一个地方输送到另一个地方,并让个元件相互连接和通信。虽然DIP还有其他演绎版,但实际上是时候转向始于20世纪80年代的下一个封装技术范式或表面贴装封装了。表面贴装封装(1980-1990年代)下一步的变化不是通过DIP安装产品,而是引入表面贴装技术(SMT)。正如所暗示的那样,封装直接安装在PCB的表面上,并允许在一块基板上使用更多的元件并降低成本。下图是典型的表面贴装封装。这种封装有许多变体,在半导体创新的鼎盛时期,这一直是很长一段时间的主力。值得注意的是,大部分芯片都是4个侧面都有引脚。这遵循了封装的一般愿望,即占用更少的空间并增加连接带宽或I / O。每一项额外的进步都会考虑到这一点,并且是一种值得关注的模式。这个过程曾经是手动的,但现在是高度自动化的。此外,这实际上为PCB创造了相当多的问题,如popcorning。封装爆裂是指在焊接过程中,塑料封装内的水分被加热,由于快速加热和冷却,水分在PCB上造成问题。另一件需要注意的事情是,随着封装工艺的每一次提升,复杂性和故障也会随之增加球栅封装和芯片级封装(1990年代至2000年代)随着对半导体速度的需求不断提高,对更好封装的需求也在不断增加。虽然出现了QFN(四方扁平无引线)和其他表面贴装技术,但我想向你介绍一种我们在未来必须了解的封装设计的开端,这就是广泛使用的球栅阵列(BGA)封装的开始。这些焊球或凸起被称为焊料凸起/球这就是球栅阵列的外观,可以从下面直接将一块硅片安装到PCB或基板上,而不是像以前的表面贴装技术那样简单地将所有4端的角落贴上胶带。因此,这只是我上面列出的趋势的另一个延续,占用更少的空间,有更多的连接。现在,我们不再是用电线细细地连接每一侧的封装,而是直接将一个封装连接到另一个。这导致了密度的增加,更好的I/O性能,以及现在增加的复杂性,即你如何检查BGA封装是否工作。在这之前,封装主要是通过视觉检查和测试。现在我们无法看到封装,所以没有办法进行测试。我们可以X射线进行检查,以及更复杂的技术。现代封装(2000-2010年代)我们现在走进了现代封装的时代。上面描述的许多封装方案今天仍在使用,但是,您将开始看到越来越多的封装类型,并且这些封装类型将来会变得更加相关。公平地说,许多这些即将到来的技术是在过去几十年中发明的,但由于成本原因,直到后来才被广泛使用。倒装芯片这是你可能会读到或听到的最常见的封装之一。我很高兴能为你定义它,因为到目前为止,我读过的入门书中还没有一个令人满意的解释。倒装芯片是IBM很早就发明的,通常会被缩写为C4。就倒装芯片而言,它确实不是一种独立的封装形式,而是一种封装风格。它几乎就是只要在芯片上有一个焊接凸点就可以了。芯片不是用线粘合互连,而是翻转过来面对另一个芯片,中间有一个连接基板,所以叫 "倒装芯片"。从维基百科上的解释内容可以更好的理解什么是倒装芯片:在晶圆上创建集成电路芯片表面的焊盘被金属化每个焊盘上都沉积一个焊点芯片被切割芯片被翻转和定位,以便焊球面向电路然后将焊球重新熔化安装好的芯片用电绝缘胶进行底部填充引线键合请注意倒装芯片与引线键合有何不同。上面介绍的DIP封装这就是引线键合,其中芯片使用导线键合到另一种金属上,然后焊接到PCB上。引线键合不是一种特定的技术,而是一套较旧的技术,涵盖了许多不同类型的封装。引线键合是倒装芯片的前身。先进封装(2010年代至今)我们一直在缓慢地进入"先进封装"半导体时代,我现在想谈谈一些更高级的概念。实际上,有各种层次的"封装"适合这个思维过程。我们之前讲过的大多数封装,都集中在芯片封装到PCB上,但先进封装的开始其实是从手机开始的。手机在很多方面都是先进封装诸多方面的巨大前奏。这是有道理的!对于手机需要在尽可能小的空间内集成大量的芯片,比笔记本电脑或台式电脑密度大得多。所有东西都必须被动冷却,当然也要尽可能薄。这将封装推向了新的极限。我们讨论的许多概念都是从智能手机封装开始的,现在已经将自己推向了半导体行业的其他部分。芯片级封装(CSP)芯片级封装实际上比听起来要宽一些,最初意味着芯片大小的封装。技术定义是封装尺寸不超过芯片本身的1.2倍,并且必须是单芯片且可连接的。实际上,我已经向您介绍了CSP的概念,那就是通过倒装芯片。但CSP确实通过智能手机提升到了一个新的水平。这张照片中的所有东西都是芯片芯片的1.2倍大小,并且专注于节省尽可能多的空间。CSP时代有很多不同的风格,包括倒装芯片、右基板和其他技术,都属于这一类。晶圆级封装(WLP)但还有一个更小的级别--这就是 "终极 "芯片规模的封装尺寸,或在晶圆级封装。这几乎就是把封装放在实际的硅片本身。封装的就是硅片。它更薄,具有最高水平的I/O,而且显然会非常热,很难制造。先进的封装革命目前是在CSP的规模上,但未来将集中在晶圆上。这是一个有趣的演变,封装被实际的硅本身所包含。芯片是封装,反之亦然。与仅仅将一些球焊接到芯片上相比,这真的很昂贵,那么我们为什么要这样做呢?为什么现在对先进封装如此痴迷?先进封装:未来这是我长期以来一直在描述的趋势的一个顶峰。异构计算不仅是专业化要做的事,而且是我们如何将所有这些专业化的碎片放在一起的事。先进的封装是使这一切发挥作用的关键推动因素。让我们来看看苹果M1 - 一种经典的异构计算配置,特别是其统一的内存结构。对我来说,M1的诞生不是一个 "哗众取宠 "的时刻,而是异构计算即将爆发的一个奇特时刻。M1正在敲响未来的样子,许多人很快就会效仿苹果的做法。请注意,实际的SOC(片上系统)不是异构的--但是将内存靠近SOC的定制封装是异构的。M1采用2.5D封装将内存直接封装到处理旁边,不需要PCB连线,另一个非常好的高级封装的好例子是Nvidia的新款A100。再次注意到PCB上没有电线。HBM2 不像传统的 GDDR5 GPU 板设计那样需要围绕 GPU 的大量离散内存芯片,而是包括一个或多个多个内存芯片的垂直堆栈。存储芯片使用微小的导线进行连接,这些导线由硅通孔和微凸起形成。一个 8 Gb HBM2 芯片包含 5,000 多个硅通孔。然后使用无源硅中介层连接内存堆栈和GPU芯片。HBM2 堆栈、GPU 芯片和硅中介层的组合封装在单个 55mm x 55mm BGA 封装中。有关 GP100 和两个 HBM2 堆栈的图示,请参见图 9;有关具有 GPU 和内存的实际 P100 的显微照片,请参见图 10。这里的结论是,世界上最好的芯片都是用一种方式制造出来的,而且这种革命不会停止。接下来介绍高级封装的两个主要类别,2.5D和3D封装。2.5D封装2.5D有点像我们上面提到的倒装芯片的turbo版,但不是将单个裸片堆叠到PCB上,而是将裸片堆叠在单个中介层的顶部。我想这张图很好地说明了这一点。2.5D就像有一个地下室的门进入你邻居的房子,物理上是一个凸点或TSV(通过硅通孔)进入你下面的硅插板,这就把你和你的邻居连接起来。这并不比你实际的片上通信快,但由于你的净输出是由总的封装性能决定的,降低的距离和增加的两个硅片之间的互连超过了没有在一个单一的SOC上的所有缺点。这样做的好处是你可以使用 设计好的“小芯片”来快速拼凑更大更复杂的封装。如果能在一块硅片上完成就更好了,但这种工艺使制造变得更容易,特别是在较小的尺寸上。“小芯片”和2.5D封装可能会使用很长时间,它比3D封装更容易制造,也便宜得多。此外,它可以很好地扩展,并且可以与新的小芯片一起重复使用,从而通过更换小芯片来制造相同封装格式的新芯片。AMD的新的Zen3改进就是这样的,其中封装相似,但一些小芯片得到了升级。3D封装3D封装是一个“圣杯”圣杯,是封装的终极终结。可以这样比喻,现在,与其在地面上拥有所有1层楼高并由地下室连接的独立小房子,不如拥有一座巨大的摩天大楼,该摩天大楼是用适合功能所需的任何工艺定制的。这是3D封装 - 现在所有的封装都是在硅片本身上完成的。它是驱动更大、更复杂结构的最快、最节能的方法,这些结构是为任务而构建的,并将显著延长摩尔定律。未来我们可能无法获得更多的芯片尺寸收缩,但现在有了3D封装,我们仍然可以在未来改进我们的芯片,类似于以前的摩尔定律。而有趣的是,我们有一个整个半导体市场走向3D的明显例子--内存。存储器向3D结构的推进是对未来发展的一个很好的说明。NAND不得不采用3D结构的部分原因是它们在较小的几何尺寸上难以扩展。想象一下,内存是一座大型的3D摩天大楼,每一层都由一个电梯连接起来。这些被称为 "TSV "或通硅孔。这就是未来的样子,我们甚至有可能将GPU / CPU芯片堆叠在彼此上或在CPU上堆叠内存。这是最后的边疆,而现在我们正在迅速接近的边疆。在接下来的5年里,你可能会开始看到3D封装一遍又一遍地出现。2.5D/3D 封装解决方案快速概述我认为,与其进一步了解3D和2.5D封装,不如直接介绍一些正在使用的、你可能已经听说过的工艺。我想在这里重点谈谈晶圆厂所做的工艺,这些工艺是推动了3D/2.5D集成发展的。台积电的CoWoS这似乎是 2.5D 集成工艺的主力,由 Xilinx 率先推出。该过程主要集中在将所有逻辑芯片放入硅中介层上,然后放到封装基板上。一切都通过微凸起或球连接。这是一个经典的2.5D结构。台积电SOIC这个台积电的3D封装平台, 是一个相对较新的技术。。注意这个关于凸点密度和接合间距的惊人图表,SoIC在尺寸上甚至没有接近Flipchip或2.5D,而是在密度和特征尺寸方面几乎是一个前端工艺。这是对他们技术的一个很好的比较,但请注意,SoIC实际上有一个类似于3D堆叠的芯片堆叠,而不是中阶层2.5D集成。三星 XCube近年来,三星已成为更重要的代工厂合作伙伴,当然,为了不被超越,三星拥有了新的3D封装方案。在下面查看他们的XCube的视频。这里没有太多的信息,但我想强调的是,A100是在三星工艺上制造的,所以这可能是为Nvidia最近的芯片提供动力的技术。此外,在这里所有的公司中,三星可能有最丰富的tsv经验。英特尔 Foveros最后是英特尔的Foveros 3D封装。我们可能会看到英特尔在未来7nm及以后的"混合CPU"工艺中实现更多。他们在架构日已经非常明确地表示,这是他们前进的重点。有趣的是,在3D封装过程中,三星,台积电或英特尔之间并没有太大的区别。原文:https://semiwiki.com/semiconductor-services/308968-semiconductor-packaging-history-primer/
2025年09月21日
2 阅读
0 评论
0 点赞
2025-09-08
倒装芯片器件封装技术
集成电路前沿2021年11月08日12:27来自微信
2025年09月08日
1 阅读
0 评论
0 点赞
2025-06-30
关于SO、SOP、SOIC封装(宽体、中体、窄体)的详解
SOP( Small Outline Package )小外形封装,指鸥翼形 (L 形 )引线从封装的两个侧面引出的一 种表面贴装型封装。 1968 ~ 1969 年飞利浦公司就开发出小外形封装( SOP)。以后逐渐派生出 SOJ( J 型引脚小 外形封装) 、TSOP(薄小外形封装) 、VSOP (甚小外形封装) 、SSOP(缩小型 SOP)、TSSOP(薄 的缩小型 SOP)及 SOT(小外形晶体管) 、 SOIC (小外形集成电路)等。在引脚数量不超过 40 的领域, SOP 是普及最广的表面贴装封装,典型引脚中心距 1.27mm(50mil) ,其它有 0.65mm 、 0.5mm ;引脚数多为 8~ 32;装配高度不到 1.27mm 的 SOP 也称为 TSOP 。表 1、常用缩写代码含义二、宽体、中体、窄体以及 SO、SOP、SOIC之争。在事实上,针对 SOIC 封装的尺寸标准,不同的厂家分别或同时遵循了两种不同的标准 JEDEC (美国联合电子设备工程委员会)和 EIAJ (日本电子机械工业协会),结果就导致了“宽体、中体和窄体”三个分支概念的出现,把很多人搞得晕头转向,也激起很多砖家在“宽体、中体、窄体以及 SO、SOP、SOIC ”几个概念之间争得死去活来。 还有许多来自不同半导体制造商的封装不属于上述标准。 另外, JEDEC 和 EIAJ 这两种标准 的名称也并非总是被用于制造商的产品目录和数据表中,除此以外,不同制造商之间的描述系 统也不统一。 其实,静下心来,仔细看一下两个封装标准,再对比几种常见的元件尺寸,不难发现,规律其实并不复杂:1、 单从字面上理解,其实 SO=SOP=SOIC 。2、 混乱现象主要出现在管脚间距 1.27mm 的封装上,多为 74 系列的数字逻辑芯片。3、 两个标准对代码缩写各有自己的习惯:EIAJ 习惯上使用 SOP( 5.3mm 体宽);JEDEC 习惯上使用 SOIC ( 3.9mm 与 7.5mm 两种体宽);也有些公司并不遵守这个习惯,如 UTC ,使用 SOP( 3.9mm 与 7.5mm 两种体宽);另有很多制造商使用 SO、 DSO、 SOL 等。4、 两个标准规定的尺寸不同,互不兼容,其差异主要体现在宽度 WB 和 WL 上,下表给出了常用 SOP 封装在两个标准下的 WB 与 WL 值:表 2、 SOP 封装在 JEDEC 和 EIAJ 标准下的尺寸差异其中 WB 与 WL 的含义如下:名词解释它们之间主要有两点区别:相邻引脚中心间距;相对引脚中心间距。8-pin plastic SOP
2025年06月30日
12 阅读
0 评论
0 点赞